The Dissociative Interchange Substitution of the Pentacyanocobaltate(III) Series of Complexes, $[Co(CN)_{5}X]^{n-}$, n = 2 or 3

Moustafa H. M. Abou-El-Wafe and Michael G. Burnett*

Department of Chemistry, The Queen's University of Belfast, Belfast BT9 5AG, N. Ireland

The efficiency of nucleophiles, $(N_3^-, NCS^- \text{ and } Me_2SO)$ in combining with the intermediate $[Co(CN)_5]^{2-}$ depends on the ion from which the intermediate is formed, $[Co(CN)_5(OH_2)]^{2-}$, $[Co(CN)_5CI]^{3-}$, or $[Co(CN)_5(N_3H)]^{2-}$, thereby suggesting that the substitution of these ions takes place by dissociative interchange, I_d .

One of the most convincing demonstrations of a *D*-type mechanism involves the measurement of nucleophile competition during substitution proceeding at the limiting dissociative rate.¹ The pentacyanocobaltate(III) family of complexes has been supposed² to form an ideal group for the demonstration of this class of substitution. Recently,³ however, some of the data in the case of N₃⁻⁻[Co(CN)₅(OH₂)]²⁻ have been corrected and it is no longer considered to be a case of limiting *D*-type mechanism. On the other hand, part of the experimental evidence in favour of such a reaction in the NCS⁻⁻[Co(CN)₅(OH₂)]²⁻ system has been confirmed.⁴ The remaining kinetic evidence also concerns the NCS⁻ nucleophile and, in view of its apparently unique character, we have repeated and extended the original competition studies.⁵

The original experiments involved the acid catalysed hydrolysis of $[Co(CN)_5N_3]^{3-}$ via $[Co(CN)_5(N_3H)]^{2-}$ in the presence of added thiocyanate ion. We have repeated the experiments using an improved monitoring system and computer modelling to fit the constants k_1 , and k_1k_2/k_3 to the experimental absorbance-time curves. The computer model was based on the simple dissociative Scheme 1.† In

[†] The ion charges have been omitted for clarity but Co(CN)₅X, Co(CN)₅Y, and Co(CN)₅Z are all (3–) ions when X, Y, or $Z = Cl^-$, NCS⁻, or N₃⁻ but are (2–) ions when X, Y, or $Z = OH_2$, N₃H, or Me₂SO. The intermediate, Co(CN)₅, is a (2–) ion.

the particular case of $X = N_3H$, the rate of the back reaction reforming $[Co(CN)_{\delta}(N_3H)]^{2-}$ may be neglected.

Further experiments have also been performed using $[Co(CN)_5Cl]^{3-}$ and the nucleophiles thiocyanate, azide, and dimethyl sulphoxide. The results of the corresponding anation reaction of $[Co(CN)_5(OH_2)]^{2-}$ are also given in Table 1.

None of the anation studies reported here or elsewhere,⁶ except the thiocyanate case, show any evidence of the high nucleophile concentration fall-off in rate constant, k_{obs} , required by Scheme 1, ([Z] = 0 and X = OH₂), and predicted by the rate equation (1). The maximum or mini-

$$\frac{d[Co(CN)_{5}(OH_{2})]}{dt} = \frac{k_{1}k_{2}[Co(CN)_{5}(OH_{2})][Y]}{k_{2}[Y] + k_{-1}[H_{2}O]}$$
$$= k_{obs}[Co(CN)_{5}(OH_{2})]$$
(1)

mum limiting values possible but still consistent with the experiments are quoted in Table 1 together with values of k_1k_2/k_{-1} calculated from k_{obs} using the rate equation,

Table 1.	Relative	nucleophile	efficiencies	in	$[Co(CN)_{\delta}X]^{n-1}$
substituti	ion, $n = 2$	or 3.ª			

Nucleophile ^b Y	Leaving group	10 ⁵ k ₁ /s ⁻¹	$10^2(k_1k_2/k_{-1})/s^{-1}$	k_2/k_{8}^{b}
NCS-	OH ₂ d	233	3.5	15
NCS-	N ₃ H	330°		13°
NCS-	Cľ-	45	_	0
N_3^-	OH ₂ d	(>700)	3:7	(<5)
N_3^-	Cl-	45		ca. 5
Me ₂ SO	OH_2	(>400)	2.2	(<5)
Me_2SO	Cl-	45		13

^a At 40 °C and unit ionic strength maintained by Na[ClO₄]; u.v. measurement of concentration. ^b Z = H₂O in all cases. ^c Calculated using $pK([Co(CN)_5(N_3H)]^{2-}) = 0.67$ taken from ref. 5 in which $k_2/k_3 = 19$, $k_1 = 3.2 \times 10^{-3} \text{ s}^{-1}$. ^d Ref. 4. Table 2. Relative nucleophile efficiency in $[Co(CN)_5(OH_2)]^{2-}$ and $[Co(CN)_5Cl]^{3-}$ substitutions.^a

Y^b
$$[Co(CN)_5Cl]^{3-c} C^{k_2/k_3} [Co(CN)_5(OH_2)]^{2-d}$$

N₃⁻ ca. 0.4 1.7
NCS⁻ 0 1.6

^a At 40 °C and unit ionic strength maintained by Na[ClO₄]. ^b Z = Me₂SO in all cases. ^c Calculated from k_2/k_3 values in Table 1. ^d Calculated from k_1k_2/k_{-1} values in Table 1.

assuming that $k_2[Y]$ may be neglected. The relative nucleophile efficiencies for Me₂SO, N₃⁻, and NCS⁻ may be estimated from these data for $Y = N_3^-$ or NCS⁻ and $Z = Me_2SO$.

Values of k_2/k_3 for $[Co(CN)_5OH_2]^{2-}$ found in this way are compared in Table 2 with corresponding values calculated for $[Co(CN)_5CI]^{3-}$ from data in Table 1. There is clear evidence that the origin of the hypothetical intermediate $[Co(CN)_5]^{2-}$ markedly changes the observed relative nucleophile efficiencies. This confirms the conclusion from the direct competition measurements in Table 1. Although these latter data are consistent with the requirements of a limiting dissociative mechanism in that the hydrolysis rate constants for $[Co(CN)_5CI]^{3-}$ and $[Co(CN)_5(N_3H)]^{2-}$ were both unaffected by the added nucleophile, the nucleophile efficiency ratios k_2/k_3 varied with the leaving group X. This behaviour is typical of a dissociative interchange reaction (I_d) rather than a true dissociative reaction (D).

Other evidence from solvent effects⁷ and activation volumes⁸ correctly suggested a dissociative path but the fact they were also supposed to indicate a D-type mechanism must cast doubt on their value as probes of detailed mechanism.

We thank the Arab Republic of Egypt for a post-graduate award and the C.V.C.P. for an O.R.S. award (to M. H. M. A.).

Received, 9th May 1983; Com. 585

References

- 1 C. H. Langford and H. B. Gray, 'Ligand Substitution Procosses,' Benjamin, New York, 1965.
- 2 M. L. Tobe, 'Inorganic Reaction Mechanisms,' Nelson, London, 1972, p. 92.
- 3 A. Haim, Inorg. Chem., 1982, 21, 2887.
- 4 M. G. Burnett and W. M. Gilfillan, J. Chem. Soc., Dalton Trans., 1981, 1578.
- 5 A. Haim and W. Wilmarth, Inorg. Chem., 1962, 1, 583.
- 6 J. E. Byrd and W. K. Wilmarth, Inorg. Chim. Acta Rev., 1971, 5, 7.
- 7 M. J. Blandamer, J. Burgess, M. Dupree, and S. J. Hamshere, J. Chem. Res., 1978, (S), 58; (M), 0728.
- 8 D. A. Palmer and H. Kelm, Z. Anorg. Allg. Chem., 1979, 450, 50.